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In recent years many research papers have appeared on the problem of 
establishing the connection between the stresses and deformations in 
Plastic bodies that have the hardening property. The existing experimental 
data have convincingly shown that under conditions of heavy loading 
neither the simplest theories of plasticity nor the theory of elasto- 
plastic deformations are applicable. To be able to explain experimental 

results, it has become necessary to introduce a number of new ideas, 
among them the concept of a corner or conical point on the loading sur- 
face. A recently published survey [ 1 1 relieves us of the necessity of 
presenting these new ideas here. 

It should perhaps be pointed out that the hypotheses underlying the 
modern theory of plasticity are of a precise formal nature, while the ex- 
perimental data are insufficiently definite and are ordinarily used only 
for indirect verification of the theory; they admit, as a rule, of various 
interpretations. This is why no one viewpoint prevails at present in re- 
gard to the direction of future development in the theory of plasticity. 

The present author does not claim to have made progress in this direc- 
tion; his aim is to illustrate with a simple example certain properties 
of an elasto-plastic body analogous to properties of hardening plastic 
material on the basis of realistic theories. It is known that properties 
of a hardening material can be modified by the use of a bar system, con- 
sisting of elasto-plastic elements of a material which does not have the 
property of hardening [ 2 1. In the present paper this idea is developed 
for systems with two degrees of freedom. 

Let us consider an elasto-plastic system subjected to the action of 
forces Q,, . . . . Q,. Let the corresponding displacements be pi, . . . , q,. 

In the n-dimensional space there exists the initial yield [or flow] 
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f(Q,, . . . . Q,), which separates the region of elastic state from 

that of the elasto-plastic state. A simple loading is a loading along a 

ray starting at the origin of the coordinate system. It corresponds to a 

proportional increase of the forces. After a certain elasto-plastic state 

(represented by a point M of the n-dimensional space) is reached along 

some loading path, we can either continue the loading, which will be 

accompanied by plastic deformations, or we can unload the system. Hence, 

a surface can be passed through point M which is called the surface of 

plastic flow and which separates the region of plastic loading from the 

region of elastic loading. 

Simple properties can be ascribed to the elements of this system, for 

example, it follows the diagram of uniaxial plasticity with an elastic 

unloading. The properties of the system as a whole, i.e. the relationship 

between Che applied forces Qi and the observed deformations pi, can serve 

as an analogue of an elasto-plastic body. 

It should be noted that the Batdorf-Budiansky [ 3,4 I theory of plasti- 

city is essentially based on consideration of the above model. Certain 

hypotheses expressed by these authors may give rise to objections (this 

is admitted even by the authors). For this reason we will start here with 

a simpler model made up of elements which cannot arouse any doubt as to 

their validity. As an example of such a model we select a thin pipe of 

elasto-plastic material which does not have the hardening property. This 

pipe is bent by two moments, Mx and M , 
Y 

in perpendicular planes. 

Let us denote the radius of the pipe by R, its thickness by 6, the 

modulus of elasticity of the material by E, and the yield limit by us. 

If Mz and My change proportionately, i.e. if we have a case of simple 

loading, then obviously there will occur simple bending of the Pipe by a 

moment M = \/ M: + M’y. Without loss of generality, we can direct the x- 

axis along the neutral bending axis. The curvature of the bent axis of 

the pipe is given by 

if the stresses do not exceed the yield limit. 

If a plastic deformation takes place within the pipe, we will desig- 

nate the polar angle of the boundary of the plastic zone by 6 (Fig. 1). 

Since the deformation at the corresponding poin.t is equal to us/E. we ob- 

tain 
xR sin 0 == o9 / I; 

The stress a, at the point determined by the Polar angle Q. is given 

by 
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Let us compute the moment produced by the stresses in the elastic part 

given by formula (l), and by the stresses us in the plastic part. We then 

obtain 

20 -t_ sin 20 nf = xR%sq --- 
sin 0 

We introduce the following dimensionless quantities: 

We obtain 

Q = (20 + sin 20) q in the 
elasto-plastic 

region 

(2) 

Q= ‘cq in the elastic 

region 

Fig. 1. 

The quantity (2 8 = sin 2 6) depending on q can be called the plastic 

modulus, and we will denote if by Es. The factor II in the second formula 

corresponds to the modulus of elasticity Eu. In Fig. 2 the relationship 

between Q and (I is given. 

Fig. 2. 
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Returning to the general case when the moments Mk and My are acting, 

for the case of simple loading we now obtain the following relations: 

Q, = ES9;, Q, = fi,q, 

The quantity E depends on 9 = \/ 9x2 + qy2, or, Q = d Qz2 + Qy2. 

Q< r, we must take E. = R in formulas (2). 

These relations are entirely analogous to the relations between 

stresses and deformations in the Nadai-Hencky theory. 

If 

The region of applicability of these relations is, however, not limited 

(3) 

to simple loading, and the condition of unloading does not coincide with 

the Il’iushin condition. For further consideration it will be useful for 

us to have a geometric representation in a plane with coordinates Q,, Qy 

(Fig. 3). The circumference Q = R here corresponds to the initial yield 

surface [or flow surface], and the path of simple loading corresponds to 

the ray passing through the origin of the coordinate system. The region 

of possible elasto-plastic states outside the initial yield surface also 

proves to be bounded. Indeed, the dimensionless moment cannot exceed the 

value Q= 4. which corresponds to the transition of the entire cross- 

section of the pipe into the plastic state. The circumference Q= 4 

corresponds to the limiting yield surface. The concept of a limiting 

yield surface for a material with a limiting ability of hardening has not 

as yet been introduced into the theory of plasticity, though it appears 

to be a quite natural idea. 

Let us now suppose that we have applied a simple loading up to a load 

value Q. Again, without restricting generality, we can assume that the 

loading has taken place along the Qz-axis up to point M. The boundary of 

the plastic region is determined by the angle 6. We will continue the 

loading, changing not only Q, but also Qy, which was zero throughout the 

first stage of loading. The neutral axis of bending will no longer be the 

x-axis but some other line nn’ (Fig. 1). 

Thus, if no unloading occurs. formula (3) will remain valid. Hence 

there exist paths of loading which originate at point M and differ from 

the path of simple,loading, but for which the relations of deformation 

theory remain valid. The extreme case is obtained when an increase in the 

plastic region occurs only from one side, for example the point A moves 

in the direction of the arrow to position A: while point B remains fixed. 

The straight line A’B has to be parallel to the axis nn’i The bending 

moment relative to this axis can be evaluated by formula (21 if in place 

of the angle 8 the angle 6’ = 8 - 13 is substituted in it. In this way we 

get 

Q, = Q (0 - PI ~0s P, Q, = Q (0 - 8) sin B 
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v 
Fig. 3. 

This means that the extreme path of loading (passing through point M). 
for which the relations of deformation theory are valid. can be obtained 
by rotating the curve, whose equation in polar coordinates is given by 
formula (2) 

Q = Q PN 

about the origin of the coordinate system until it passes through point 
M. It is obvious that the second family of limiting curves can be 
obtained by rotating curve Q = Q (- 8 1. 

The extreme paths of simple loading are shown in-Fig. 3. 

In the neighborhood of Point M we have 

AQ, = 2 ~0s p (- AfJ) -Q sin PA?, AQ,=d~sin13(-AB)+Qcos~A~ 

but since j3 is small, 

AQ, = QAP 

We note that 

dQ dQdq _-_-- 
de - dq de --%Qctge 

Here 

dJ = 20 - sin 28 = 
dq 

E t 

It is natural to call this quantity the tangent modulus. We can now 
determine the slope of the limiting paths of simple loading which pass 
through point M 

(4) 
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The corresponding angle is equal to a/2 when 8 = 0, and 8 = s/2. Its 

minimum value of 76’28’ is attained when 8 = 57’30’* 

We will now obtain the conditions of elastic unloading after simple 

loading. It is obvious that the elastic unloading is here possible not 

only by a proportional decrease of the moments. The neutral axis of un- 

loading can change position within certain limits. The extreme case will 

occur when this axis passes through the boundary of the plastic region. 

Let us suppose that a simple loading had been carried out along the X- 

axis up to a certain value of the dimensionless moment Q; the unloading 

has been realized in consequence of an additional bending relative to an 

axis making the angle 4 with the x-axis. In consequence of the unloading, 
the moment relative to the x-axis changes by an amount 0,‘. and a new 

moment Qy’ appears. 

Cwing to the fact that the unloading occurs in the elastic region. we 

may set 

Qz* = - xw cos p, Q,’ = - IEO sin p, 

The corresponding stress is 

a’ = - wuS sin (a - ‘p) 

We will consider the unloading process along a path passing through 

point M. Then 

Q, = q - xo cos(p, Qy=-zrOsincp (5) 

Thus the stresses are determined as follows: 

d = oS [ 1 - 0 sin (a - cp)] (e<a<w--_) 

[ 
sin a 

w=o ----osin(a-p)] (~“~~~~,,) 
8 sine (6) 

The limiting path of unloading is given by the formulas (5) with 4= 0. 

Therefore the curve, which in our model corresponds to the successive 

yield surface passing through M. has this point for a corner Point. The 

limiting lines of unloading form an angle 8 with the x-axis. 

Comparing the results obtained under conditions for which the formulas 

of simple loading are valid, and the results obtained under conditions 

of unloading, we note that they agree qualitatively with the consequences 

of the Batdorf-Budiansky theory. According to this theory. the tangents 

drawn at the corner point bound the region of applicability both of the 

deformation theory and of the region of unloading, while in our theory 

the angle of unloading is found to be less than the angle of simple load- 

ing. 

Let us next determine the boundaries of the region of unloading im- 
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posed by the demand that secondary plastic deformations can occur. For 

this purpose we must let u = - us in formulas (6). In the plastic region 

we obtain: 

1 - w sin (a -- y) = - 1 

When a - + = a/2, we obtain o= 2. Thus, the boundary is the circle of 

radius 2n, with center at the point x = Q, y = 0. The investigation of 

the possibility of the occurrence of secondary plastic deformations in an 

original elastic region leads us to the discovery of a second boundary 

which is also a circle with center at the point x = Q- n and of radius 

n/ sin 0. In Fig. 4 the boundaries of the region of unloading (yield 

curves) for several values of 0 are constructed. 

Fig. 4. 

When 0 is small, the elastic region is bound by straight lines and the 

arc of the first circle; when 8 > 43’30’, it is bound by straight lines 

and arcs of two different circles. 

For unloading paths originating at point M and not contained in the 

angles of simple loading and unloading, the analysis becomes more involved. 

We will limit ourselves to the consideration of small variations of the 

state of stress. Let us assume that the axis of the additional rotation 

makes (with the x-axis) an angle (I, > 8, and therefore intersects the 

plastic zone. The additional stresses u’ = ous sin (a - 4) occur only in 

the elastic region, i.e. when - (b < a < 4 and n - $ < a < R + c$. Comput- 

ing the moments due to these stresses, we obtain the results in the form 

fi, (‘9) _t- B, (0) 
AQ, = Aq, ~- 

2 
+ Aq, (silr’o - sin’ 6) 

I:‘,(q) _I~ li, (0) 
AQ, :-= Aq, (sin” 9 - sin* 6) + Aq, --‘-- 

Here, obviously, tan +=A q / hq . When (I, = 8. we obtain from this 
the relations between the varia 5. ions ?n the stresses and deformations 
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which are analogous to those of the deformation theory of Plasticity 

When 4 = n - 8, unloading occurs, and it follows from relation (7) 

that 

AQ, = IC,Aq,, AQ, == I!‘,Aq, 

The formulas (7) are quite complicated, and it is difficult to draw 

an analogy between their consequences and any one of the existing theories 

of plasticity. We can hardly, therefore, expect a simple description of 
the behavior of material under variable loads whose change of components 

deviates even slightly from proportionality. We note that if in the 

formulas (7) we separate the part corresponding to the plastic deforma- 

tion, we then find that the increment vector of the plastic deformation 

makes an angle with the x-axis which does not exceed n/2 - 8. From this 

it follows that our model satisfies the well-known Drucker condition 

(Qi - Qi*) Aqi” > 0 

Here Qi* is the state represented by a point which lies inside the 

yield surface. We can easily verify that the relations (7) satisfy the 

fundamental Drucker definition of hardening: 

'Qi Aqi'>O 
Finally we come to the last question to be considered here, which con- 

sists of the following. In the modern theory of plastic flow it is assumed 

that the function expressing the condition of plasticity coincides with 

the flow potential. This means that under an arbitrary change of the state 

of stress, the increment vector of the plastic deformation is directed 

along the normal to the yield [or flow 1 surface, if this surface is smooth. 

This follows directly from the above Drucker condition. As we have ex- 

plained, the yield surface, in our model, consists of two rays Passing 

through point M, and an arc of one of two circles. Let us assume that the 

system is loaded, After this we follow an arbitrary path of unloading 

lying entirely in the elastic region to a point of the straight line part 

of the yield curve, for example to point N (see Fig. 3). The state of 

stress corresponding to point N is such that the stress is everywhere less 

than the limit of plasticity and reaches this limit when a = 8, decreas- 

ing as a linear function of the coordinates on at least one side of a=6. 

Next let us suppose that we have subjected the pipe to an additional bend- 

ing with deformation components Aq, and hq,,. Over the entire cross- 

section of the pipe a change will take place in the stresses in accord- 

ance with Hokke’s law, except that at the point a = 8, where the stress 

was equal to the yield limit, this stress will remain unchanged. Around 

this point a small plastic region a - c 1 < a < 8 + f 2 will be formed. 

The same phenomenon occurs at the diametrically opposite point, of course. 
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In computing the moment we first of all extend the integration over 

the entire cross-section of the pipe, and obtain 

AQ,' =: I?,Aq,, AQu :.= rSOAqU 

After this we evaluate the moment from the stresses exceeding the yield 

limit which we have as it were added over the region 8 - c1 < a < 8 + c2. 

We denote this moment by Q,, and point out that it has the components 

QO sin 8 and Q, cos 8 along the coordinate axes. Thus, 

AQ, = E,Ag, - Q0 sin 8, AQ, = E,Aq, + Q, cos 0 

Hence, 

Aq, -_ ; AQ, + 9 sin 0: 
0 0 

A<+, = kU Aq, - 2 cos 0 

In these formulas, the first terms on the right-hand sides represent 

elastic deformations, while the second terms stand for plastic deforma- 

tions. It can be seen that the increment vector of plastic deformation is 

perpendicular to the yield [or flow] surface. 

In these considerations it is of course essential for quantities cl 

and c2 to be infinitesimals of the same order as Apx and hgy. For this 

to be so, it is necessary for the distance NM to be large. 

It is thus seen that the proposed simple model reproduces many pro- 

perties of a plastic body which have been either revealed by experiments 

or postulated in some theories of plasticity, in particular the restricted 
applicability of relations among deformations, the presence of a corner 

point on the successive yield [or flow] surfaces when the initial yield 

surface is smooth, the Bauschinger effect, and the direction of the in- 

crement vector of plastic deformation along the normal to the yield sur- 

face wherever this surface is smooth, Moreover, the example presented 

reveals the great complexity which arises in any description of the pro- 

cesses of non-proportional loading. 
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